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An existence theorem for a periodic solution of a nonlinear nearly-Liapunov self-con- 
tained system containing lag in the form of small increments is proved. A practical pro- 

cedure for the construction of the solution is described. 
Equations of the (1.1) type describe mechanical systems which contain materials with 

an essentially nonlinear elastic characteristic (plastics, rubber) r2]. nonlinear dampers 
with an inelastic restoring force, and systems with a feedback-loop lag (as in locator- 

type devices p]), etc. 
Pontriagin [4) proved an existence theorem for a periodic solution of a self-contained 

nearly conservative system without lag. 
In the present paper the method of ancillary systems of Shimanov [5 and 61 is used to 

prove the existence of, and to construct, periodic solutions of Eq.(l. 1). 

1, Let us consider the system described by differential equations with lag of the form 

dx 
--~x+~.(x)+I~F(x(~),x(~--~), P) dt (I.11 
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Here I, and all are constants; Xk are analytic functions of the variables zl,,.., z,, 

in the neighborhood of the point zt = . . . =z,, = 0 whose expansions in powers of these 
variables begin with terms of order not lower than two; the functions Fk are analytic in 
the variables zt (t) ,..., 2, (t), zI (t - T) , . . . , z,,(t - T) in some neighborhood of 
the origin, and also in the small parameter @ in the neighborhood of the point p = 0; 
T is the constant lag. 

We assume that the generating system 

dx 
- = Ax + X(x) 
dr (4.2) 

is a Liapunov system, i.e. that the following conditions are fulfilled [l] : 
a) the characteristic equation Iat, - P&j I = 0 does not have zero roots and roots 
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of the form Nh m (where N is an integer); 
b) system (1.2) has a first integral of the form 

H = zrz + x22 + Iv (x*9..., 5,) + s (x1 (..., x,) = const (4 -3) 
Here w.is a quadratieform in the variables X3, , . . . , x, ; _S is an analytic function 

of the variables x1,. . . , X, whose expansion begins with terms of order not lower than 
three. 

Dots between vectors, as in x + y , represent scalar multiplication; the derivative 
dH/dx” is computed for generating solution (2.1). 

2. We know [l] that under the above assumptions system (1.2) has a periodic solution 
dependent on the two arbitrary constants c and q, 

2,” (L + q, c) = c co.90 + C’21, (0) +... (2.1) 
2%’ (1 + q, c) = c sin 0 + EI + (0) +... 
Go (t + % 4 = c&J, (0) + zt,, (0) + . . . (s = 3,..., n) 
0 = L (1+ rl) [i + h (c)l-‘, h (c) = h&S + h# + . . . 

where 511 (0) ,are periodic functions of o of period 2n which satisfy the conditions 

q (O)= 2s) (0) = 0 (j > 2),and where hL, Is,... are some constants of which the first 

nonzero constant has an even subscript.Series (2.1) converge for all tl and for values of 
c from some neighborhood C of the point c = 0. The period.of solution (2.1) is given 

by Formula 
T = h/h [i + h (c)l (2.2) 

The following theorem is valid. 
Theorem. System (1.1) has a periodic solution which becomes a generating solu- 

tion belonging to family (2.1) for p = 0 if and only if the parameter c satisfies Eq. 
T 

R(c)=\ P(xO(t), x0@- 7), 0). &it=0 (2.3) 
i 

Every simple root c = ~a of Eq. (2.3). i.e. every root such that 

(dRl&), = C, + 0 (2.4) 

is associated with one and only one periodic solution of system (1.1) analytic in p in 
the neighborhood of the point p = 0. The period of this solution is also an analytic func- 

tion of lb. 
P roof. Let us denote the period of the required periodic solution by T (i. + pa) 

where a is generally not equal to zero. Replacing the time t in system (1.1) by 

t1 (i + pa), we obtain 

dx 
- = [Ax + x (x) + pF (x (Q, x @I- fl), p)l (i + w 
dfl 

(r = Tl (i + Ira)) (2.5) 

The problem reduces to that of finding the periodic solutions of period T of system(2.5). 
Making the substitution x (h) = XI0 (tl, c) + p2 01) 

in system (2.5). we obtain the following system in a: 

$- t (A + P) z + F" + a z + p@(h) z @I), 2 (h-d, t') (2.6) 

where 

P=h_p 
*xi I( ,I o”j o ’ 

Fe = P (x0 (1$, X0 (11- Tl), 0) (2.7) 
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The parentheses (...)s mean that the generating solution has been substituted in after 

differentiation. System (2.6) has a periodic solution of period 2’ only if the condition of 
existence of a periodic soulution of the system obtained from (2.6) for p = 0 is fulfilled. 
This condition is [l] T 

I( 
Y=$) 

0 

(2.8) 

Here the vector function Y is the unique periodic solution of period T of the system 
adjoint to the system in variations for Eqs.(l.2). 

Recalling that T T 

s 

djt” dH 
adt, .zdtl=a 

s 
-$f. dt, E 0 

0 0 

we obtain the necessity of condition (2.3). 

Let us suppose that condition (2.3) has been fulfilled by the choice of c = es and that 
the point. c = cs lies in the domain G of convergence of series (2.1). We can show that 

if condition (2.4) is fulfilled, then there exists a unique periodic solution of system (2.6). 

Along with system (2.6) we consider the ancillary system 

Here the constant W is given by the relation 
T 

W=-+~S.‘Fdtl 

0 

(2.10) 

The periodic solution of ancillary system (2.9).(2.10) can be.found by the method of 
successive approximations. As the first approximation we take 

u(i)= (dto / at,), c,, WC’) = 0 

The mth approximation is given by the system 

+ pu+“-‘) + w(‘“)cp (2.11) 

T 

wcm)=_$ s d”-‘)Y dt,, @m-l) = Q, (tl, l&m-l) @I), u@-l) (tl- Q), p) 

0 

The periodic solution of system (2.11) is of the form 

u(m) =lkrn) (~)_+L(tt, P+ag)+L (h, PI@-“+ W(m)cp) 

Here the operator L satisfies the same conditions as in [l]. (p. 110). The initial system 
is self-contained, so that we can assume without limiting generality that UI (0) = 0. 
The constants M!“‘) can then be determined unambiguously from the condition u,P’) 
(0) = 0, since cp, (0) # 0. Under our assumptions concerning the right sides of Eqs.(l. 1) 
we can show (e. g. as in [5]) that for a sufficiently small 1~1 the sequences utrn) and Wm) 
converge uniformly to the vector function u* (&a, p) and to the function W* (a, p). 

System (2.6) has a periodic solution if and only if 
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T 

W(a,p)=- f s a (h, u’ (fl), u’ (I1 - rl), p) * P dh = 0 (2.12) 

0 

Recalling the form of the vector function cl, (2.7). we can rewrite Eq.(2.12) in the 

(2.13) 

where the vector functions u’and u” are periodic solutions of the respective systems 

We know from general theory [l] that 

(2.14) 

(2.15) 

By some simple but quite cumbersome operations we can show that 

Al=O, 

From the theorem on implicit functions we infer that if condition (2.4) is fulfilled, 
then Eq, (2.13) is uniquely solvable for a,’ where a is an analytic function a = a* (p) 

in the neighborhood of the point p = 0. This determines the period of the periodic solu- 

tion uniquely. The periodic solution of the initial system (1.1) can be written as 

x @I) = x0 01 + 11. CI) + I”U* (rl, a+ C), P) 

and is an analytic function of p in the neighborhood of the point p = 0. The theorem 

has been proved. 

3. Let us now describe a practical procedure for constructing the periodic solution of 
system (1.1). Making the time substitution 

r = tl (1 + Pa), a = a,+ ps + p2a3 +... 

in system (1.1). we attempt to find the periodic solution formally in the form of a series 

x 01, I4 = x0 (tl, 4 + px1 (4) + p x, (Q +... (3.1) 

with unknown periodic coefficients xi. (tl) of period T. 
These periodic coefficients satisfy Eqs. 

>=(A + P) xi + F(') +a* $ (3.2) 

where the vector functions, F * are periodic in 1, with the period T and are entire 
. . 

rational functions in x (t ) 1 xl: 1 - %I. 

We can attempt to-find the periodic solutions of systems (3.2) by applying the method 
of ancillary systems directly to systems (3.2) as we did in proving the existence theorem. 
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However, the following method is simpler and more convenient for practical purposes. 
Making the time substitution ts = Is [i + h (c)], where h (e) is defined in (a. 1). in 

system (3.9). we obtain dx* 
- = [(A + P) X‘ + F(i) ] [i + h (C)] + al$ dsr 

(3.3) 

where the vector functions Pci) are periodic in 4 with the period 2n/A. 

Let us consider system (3.3) for 1 = i 

~=[(A+P)~~+F”][i+h(c)]+a.~ 1 dtr 
(3.4) 

The vector function F” is defined in (2.7). Along with system (3.4) we consider the 

ancillary system 

2 = [(A + P) UI + P”] [i + h (c)l + a1 g t; WUQI + WIIQS (3.5) 
an/A 

(hl+ F“) 11 + h ‘(c)l + Aud (4 + al g I Q, dh 
0 

- cos it, sin aA2 
Ull 

I P sin Ua 
-co9 MS 

u1= *-* (, Q1= o ( Q,= 0 (k=i, 2) 

% . . . . . . . . . . . . 
4 0 0 4 

We attempt to find a periodic solution of ancillary system (3.5) in series form, 

‘us= it&Y, wlll= $ w&y (k= 4, 2) 
Y==0 Y=Q 

where n&yj are unknown periodic vector functions of as of period 2n/L; Wnrty) are un- 
known constants. As already noted, in computing the periodic solution we can set 
url (0) - 0 without limiting generality. Hence, as our initial conditions we take 

ug) (0) = 61, $1 (0) = 0, $1(O) = Uk’ (0) = 0 (7 > i) (3.6) 

Here pl is a constant to be determined. 
The periodic solution of system (3.5) with initial conditions (3.6) always exists and 

can be computed with any degree of accuracy. Since systems (3.5) are linear, and the 
constants WI, are given by 

% = cE&) Bl + al VA (c) + Hil) (c) (k = 1,2) (3.7) 

Here Eh, Vk, Hk are analytic functions of c, where at least one of the functions 
El (c), Ex [c) does not vanish identically. 

The periodic solution of system (3.4) exists if and only if 

w,, = 0, w,, = 0 (3.6) 

The compatibility condition for system (3.8) can be written as 

Rl (c) = c El (c) W21 - cE2(c)Wu = 0 (3.9) 

Condition (3.9) is nothing other than condition (2.3) written in a different form, since 

the latter is the condition of existence of a periodic solution of system (3.4). Since Eq. 
(2.3) does not contain ai, we have a relation 

s (c) = c Es (c) V, (c) - CE, (c) Vl (c) = 0 (3.10) 

From now on we assume that condition (3.9) is fulfilled by the choice c = ct . From 
system (3.8) we find pl = &* (al, c).It is clear that bl* (q, c) is an analytic function 
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of, c in the neighborhood of the point c = Owith a pole of some order at this point, and 

that it is a linear function of a1, 

The periodic solution of system (3.4) can be written as 

Xl = “I (ts, fV(“r, c), al, c) + MB* (c e) (3.11) 

where q+ = (&so / df&Ct. From the condition z,, (0) = 0 we find that MI = 0. 

Let us assume now that the vector function x, (1 < m - i) have been computed and 
that they are analytic in the neighborhood of the point E = 0 with poles at this point . 
Let us assume that the quantities %,..., a,,,_, have been determined uniquely and that 

they are analytic functions at the point c = 0 with poles at this point. 

Let us consider system (3.3) for 1 = m 
dx 
~-[(A+P)x,+F(m)] [i+h(c)]+a dxo 
db mdlz 

(3.12) 

Here FCm) are unknown vector functions of ts, analytic in c in the neighborhood of 
the point c = 0 with poles at this point and analytic in h-1 (the latter is self-evident 

for m > 2; it is easy to show that for m = 2 function F(S) is a linear vector function of 

ad. Let us isolate the terms containing a,,,_l as a factor in F(m), 

F(“) = a_l + Q 6) $ + $ ($), .$ + ; (,.jx ,trf”_ & dx” ‘;,- “I + 

L-f- al $(a+Pl $$+(A+P)x1+F'] + drn) (3.13) 

where Q is defined in (8.7). and where G(m) does not contain “,,,_P We rewrite Expes- 

sion (3.13) as 

Pfrn) = am-t 
C 

idP ’ i dF -e jfj xX1+ B dc +al $-(A+0 ‘z + (A + P) xl + I+‘] + Gfm) (3.14) 

Along with system (3.19) we consider the ancillary system 

darn 
x = 1l.A + 4 Urn + Ffm) 1 11 -I- h (c)l + a, z + W,,f+ + W,mQa (3.15) 

9rlA 
I l 

wkm=-z 
\ [ 

(fim + Ftm)) [1 fh(c)] ~-AU+&(C) +am$- 1 -f2,dts (k=i, 2) t 
Specifying the initial conditions I+,,~ (0) = &,,, ha (0) = 0, we obtain the periodic 

solutions urn (b, &,,, “,,,s e) of system (3.15) and the constants W,,, in the form of series, 

“, @a, c) = 5 Uf’ (tp) cy, wkm (c) = i wgcc’ 

74 r=-d 

where d is the largest order of the pole in the Laurent expansions of the vector functions 
F(m). System (3.1’2) is a periodic solution if and only if 

WM,, = CER (c) B, + a1 VI, (c) -I- Elktrn) (c) = 0 (3.16) 

Here Hh(‘N (c) are analytic functions of c in the neighborhood of the point c=O 
with poles at this point. The compatibility condition for system (3.16) is similar to 

condition (3.9). c El (c) w,, - c Es (c) w,, = 0 (3.17) 

Since the F(m) are linear in a,,,_1 , we can isolate the terms in Wkrn which contain 
h_l as a factor, 

Wkln = Wr,,,,’ ,“,,,_I + WI,,,,” (k = 1,2) 
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so that condition (3.1’7) can be written as 

(eEi%n - e&W,,‘) r&$-l + (CE,W~” - c&W,,“) = 0 

Clearly, Eq.(3.18) is solvable for o,,,~ if 

c&wm - cE,Ws,’ # 0 

(3.18) 

Let us show that 

where’ fi is defined in (2.15). and H, (c) is defined in (3.9). In fact, 

dR1 awn dWl1 
dc = cEl (c) 7 ->cE* (‘1 dc + 

d (&I (c)) w21 _ d ‘“2 (‘)) w,* 
dc 

However, for c = cr, p1 = &* (c) we have Wr, = W,, = O.Hence, 

dR1 ( ) dWa1 
dc c=c, 

= c&i (cd 7 ( ) dWn 
C=C, 

- c&i (cd 7 ( 1 C=C* 

Eb=+%* P,=,V 

(3.19) 

(3.29) 

Moreover, the vector function u r* = ur (ts, &, al, c) is a periodic solution of the 

ancillary system. Substituting this solution into system (3.5). we obtain identities in C. 
Differentiating these identities with respect to c, we obtain 

(3.21) 

where the identities are fulfilled for all C. 
Comparing identities (3. ‘21) with system (3.15) with allowance for Formula (3.14) 

and recalling that system (3.15) and relation (3.10) are linear, we obtain 

Hence, on fulfillment of the condition 
dRr 

( 1 dc ccc, #9 (3.22) 

Eq.(3.18) is uniquely solvable for c,,,_l, where a,,,_l is an analytic function of. c in the 
neighborhood of c = 0 with a pole of some order at this point. 

From system (3.16) we obtain @, = pm* (a,,,, c). The periodic solution of system 

(3.12) is x, = u, (ts, Pm* (a,, c), %, c) 

where u,,, is an analytic vector function of c in the neighborhood of the point c = 0 
with poles at this point; it is linear in o,,,. 

Thus, on fulfilling conditions (3.9) and (3. PA), we obtain the unique system of formal 

series (3.1) satisfying system (1.1). The convergence of these series for sufficiently 
small ]p 1 follows from their uniqueness as established in the existence and uniqueness 
theorem of Section i?. 

4. As an example let us consider Eq. 

~+)1~Z-~T2a-~.~lLsZ(I-~)-~~(~-I)*=O (4-i) 

which is a special case of the equation proposed in [Z]. The term with the factor ls 
characterizes the plasticity of a material with a nonlinear elastic characteristic. 
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The generating equation 
Pz 

has the periodic solution [l] 

z” = c co9 0 + & (cos 0 - co9 30) + & (23 cos o -24cos3~+cos5w)+.. . 

57 r* 
o=kQ+q) (I+;+ +mp+...)-l 

with the period 
T = $ (1 + h& + h,c’ + ...,=x(l+~s~a+~$~‘+...) 

We shall attempt to find the solution of Eq.(4.1) in the form 

= = go (rr, c) + p 21 (tr, c) + CL*,, (&, c) + .f. 

t = t, (i + 4c’ + . ..) (i + o,p + CLBp’ +...) 

where the functions ai (t,, c) are periodic in t, with the period 2n/h. Condition (3.9) 
for Eq. (4.1) is 

Rr (c) = - aLa sin k$2c + m/mar sin JxzCa + 
-27a sin 3J.r~ + 25a sin JXs 7’ 

1024 ++...=o 

r* = ? (i + hsca + . ..)_I (1 + a1 p + . ..)_I 

The function zr (r,, c) turns out to be 

214 (&I- a cos Arz) 
21= 
3yc co9 l”t* 

23 
- -@cosLt, -&cos3*t, +... 1 

Computation of the second approximation yields the following equation for determin- 

ing a, : 

-‘/* ak4vm1 (2ul - a co9 Ar,) sin lr,c + (“/r4 aalA+ sin AT, -ss/rs & sin Ar, coa Xr,) x 

xc”+ . . . =o 
The present study was carried out under the supervision of S. N. Shimanov. to whom 
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